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What is a Supply Chain?

opedia, a supply chain is a network between a company and its %
s to produce and distribute a specific product to the final buyer.
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Perhapsithe first-thing to
understand.is.that the value
chain really covers a broader
scope of business activity than

the supply-chain, but the supply
chain is of central impoertance to
a successful value chain.
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The aviation sector is currently responsible for 2.6% of global carbon emissions. Carbon emissions of the
aviation sector are expected to increase by 3—4% each year due to the rising demand for air travel. The
use of bio-jet fuel derived from carinata (Brassica carinata) is a potential solution for mitigating carbon
emissions from the aviation sector. This study determines suitable sites for growing carinata across three
southeastern states of Georgia, Alabama, and Florida. Suitable edaphic (average soil storage, soil organic
carbon, root zone depth) and climatic variables (temperature) along with historical land use trajectories
were used for determining the land suitability for carinata production. The weights of the edaphic
variables were decided by surveying experts using the Analytical Hierarchy Process. This study also
determined the susceptibility of frost events in growing season of carinata from 2010 to 2017. Finally, the
composite risk was calculated by multiplying the probability of potential damage risk and probability of
land risk. Considering minimum risk level of 5%, about 45.56% (0.77 million ha) of land in Georgia, 0.81%
(0.01 million ha) land in Alabama and about 3.04% (0.05 million ha) of land in Florida is suitable for
growing carinata. Depending upon the composite risk level and expected carinata yields, the total
production potential of carinata was between 1.87 and 3.91 million metric tons which was sufficient for
producing between 980 and 2045 million liters of bio-jet fuel sufficient enough to replace 1.4%-2.33% of
the current jet fuel consumption in the United States. Our study will feed into current policy debate
about reducing carbon footprint of the aviation sector in the United States and promote development of
bio-economy for rural America.

© 2019 Elsevier Ltd. All rights reserved.

Up to 2.33% of conventional
aviation fuel could be replaced
nationwide.
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Fig. 5. Spatial distribution of land suitability categories for carinata production in Georgia, Florida, and Alabama. The reported suitability maps are based on edaphic conditions only
without accounting for weather and land use history.
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-mm=mmen | Relative carbon savings can range from
61% to 68% at a competitive prices with

Break-even price and carbon emissions of carinata-based . .

sustainable aviation fuel production in the Southeastern gOve fnme nta I an d Mmar kEt Ince nt IVes.
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Athens, Georgia, USA The production of biomass-based sustainable aviation fuel (SAF) is gaining
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Correspondence traction to reduce the carbon footprint of the aviation sector. We performed a
PaneetDwivedi JWamelkSchool techno-economic analysis to estimate the break-even price and life cycle carbon Storage
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University of Georgia, 180 E Green St emissions of the SAF derived from carinata (Brassica carinata) in the Southeastern
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Funding information (animal feed, propane, and naphtha), and compatibility with current farming {
Funding for this research was received practices. The system boundary started at the farm and ended when the SAF
through the USDA-NIFA Bioenergy ; : A 5 g 5 S = ! . E 7
Coordinated Agricultural Project (CAP) is delivered to an airport. Without co-product credit or other subsidies such as Carinata meal Crushing mill
Grant # 2016-11231. Renewable Identification Number (RIN) credit, carinata-based SAF was more ex-
pensive ($0.85 L~" to $1.28 L") than conventional aviation fuel ($0.50 L™"). With
co-product credit only, the break-even price ranged from $0.34 L™" to $0.89 L™". Co- H l
With both co-product and RIN credits, the price ranged from -$0.12 to -$0.66 L™". products <

The total carbon emission was 918.67 g CO,e L™ of carinata-based SAF. This es-
timate provides 65% relative carbon savings compared with conventional aviation
fuel (2618 g CO,e L™"). Sensitivity analysis suggested a 95% probability that rela-
tive carbon savings can range from 61% to 68%. Our study indicates that carinata-

based aviation fuel could significantly reduce carbon emissions of the aviation

sector. However, current policy support mechanisms should be continued to sup- I Transporting jet fuel I

port manufacturing and distribution in the Southeastern United States.
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Plant-based jet fuel could
reduce emissions by 68%

October 14,2021 - by Allyson Mann

/

Ajet refuels. (Getty Images)
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Sustainable Aviation Fuel Production from Brassica Carinata in the Southern
United States

First published: 23 February 2021 | Last updated: 12 October 2021

A Virtual Special Issue
Sustainable Jet Fuel Production from Brassica Carinata in the Southern United States

Dr. Puneet Dwivedi, Guest Editor

Associate Professor (Sustainable Sciences)

Warnell School of Forestry and Natural Resources, University of Georgia
Email: puneetd@uga.edu

The aviation sector emits 2.4% of the global anthropogenic carbon dioxide emissions. The use of jet
fuel derived from bioenergy feedstocks is vital for reducing the aviation sector's carbon footprint. This
is especially true in the United States, as the country consumes about 25% of the total jet fuel
consumed globally, out of which about a third is consumed across thirteen southern states. In this
context, Brassica carinata provides an opportunity for reducing the carbon footprint of the aviation
sector at the regional level and beyond. The oil obtained from carinata seeds could be refined to
produce jet fuel and other valuable bioproducts. Additionally, carinata is a non-food crop, and being a
winter crop, it does not compete with other summer crops in the Southern United States. Therefore,
over 100 collaborators from ten public institutions and four industry partners are undertaking
research, extension, and education efforts under the aegis of SPARC (Southeast Partnership for
Advanced Renewables from Carinata) to assess the economic, environmental, and social feasibility of
incorporating carinata into current crop rotations in the Southern United States. The focus is also on
establishing sustainable supply chains of carinata-based jet fuel by developing public-private
partnerships. This special virtual issue provides scientific grounding for carinata-based jet fuel
production in the Southern United States. It focuses on the agronomy, economics, and environmental
impacts of carinata-based jet fuel production in the region.

e"s SPARC
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Carinata & Soil Carbon Dynamics
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Modeling Yield, Biogenic Emissions, and Carbon
Sequestration in Southeastern Cropping Systems
With Winter Carinata
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FIGURE 6 | Performance of different carinata management scenarios in
terms of (A) total annual seed yield and associated SAF potential from the
study region, and (B) the associated soil GHG footprint per Mg of seed
production, also expressed in units of global waming intensity (g COze

(MJ fuel)™) for the resulting carinata-SAF. Red error bars denote +2SD of
field-to-field variability. These results focus on the local soil GHG balance only;
neither upstream emissions from nitrogen production and famm operations nor
the alternate fate of poultry litter are included.

Growing carinata using climate-smart practices saves more carbon over time.




Farm Economics
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Carinata can decrease the risk level of crop rotations by 8.1%, only if a contract price of $440.9/t is offered.



Adoption of Carinata at the Farm Level
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We developed a spatially explicit agent-based model for ascertaining the adoption rate of carinata among the farmers.
Each farmer’s adoption behavior was modeled using the profitability difference between traditional crop rotations
(with and without carinata at various contract prices), the adoption rate of neighboring farmers, and their land

allocation decisions from managing a risky portfolio of enterprises.
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Figure 4: Location of storage, oil extraction mill, and biorefinery. Note: No

created in Alabama and Florida.
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Figure 06: Unit cost and GHG emissions of SAF throughout the supply chain. CAF price and GHG emissions were
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Figure 3: Area cultivated (ha) in the study area.

Paper in review:
Renewable and
Sustainable

Energy Reviews

Developed a mathematical model (MILP) for ascertaining area harvested,
location and # of storage units, location and # of crushing mills, location
and # of biorefineries to supply carinata-based SAF to four airports
(Miami, Orlando, Atlanta, and Birmingham).
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Personal reflections...
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