

8th Carinata Biomaterials Summit

Valerie Reed, Acting Director, Bioenergy Technology Office (BETO)

July 20, 2021

DOE-EERE Overall Decarbonization Strategy

Accelerate the research, development, demonstration, and deployment of technologies and solutions to equitably transition America to a carbon pollution-free electricity sector by 2035 and a economy by no later than 2050, creating good-paying jobs with the free and fair chance to join a union, and ensuring the clean energy economy benefits all Americans, especially workers and communities impacted by the energy transition and those historically underserved by the energy system and overburdened by pollution.

EERE Mission

Keys to Ensure the Greatest Impact

Environmental Justice and Equity

Workforce Development

State and Local Partnerships

Diversity in STEM

Context For Transportation Decarbonization

- Largest source of economy -wide CO₂ emissions : netzero by 2050 requires dramatic improvement from transportation
- 50% of energy expenditures and a local pollution issue
- The magnitude of industrial change and direct consumer touch points with transportation require market-pull solutions
- Must support demand for growth in mobility options
- **100% clean electricity and dramatic technology cost** reductions enable deep transportation decarbonization
- Achieving 2050 goal requires success in the market by 2035 which **requires direction in 2021**
- Significant implications for global competitiveness, trade, and **domestic jobs**

The Real Challenge: Low-Carbon Fuel for Large Vehicles

2050 U.S. Transportation Energy Use (24.7 Quads)

Demand for mobility in the US is **projected to grow** with population and economy:

- Light-duty vehicles: +20% by 2050
- Trucking: +40% by 2050
- Aviation: +70% by 2050

Energy use for **"hard-to-electrify**" heavy vehicles is projected to reach ~70 B gallon in 2050:

- Aviation: 36 B Gal
- Maritime/Rail: 11 B Gal
- Long-haul trucks: 21 B Gal

Biomass-Derived Chemicals

- Broadens opportunity to expand biomass markets.
- Allows us to address fuel and products (i.e. economics of the whole barrel)

Inputs:

- Cellulosic based crops & ag. residue
- Oil based crops
- Algae
- Bio-solids
- MSW
- Waste gas (CO, CO2)

- Fuels
 - Aviation
 - Marine & Diesel
 - Gasoline
- Chemical Products: (15% Volume 46% Profit)

New, Growing Markets for Biomass will be Critical

Role of cover crops are not well defined in the Billion Ton Study: Carinata, Camelina, and Penny Crest NEEDS:

- Data on harvest, collection, storage, transport, and preprocessing
- Incorporate data into models to develop supply curves, evaluate economic competitiveness and environmental benefits

- Current markets for biomass include starchethanol, biodiesel, renewable diesel and sustainable aviation fuels and some chemicals
- Focus biomass where it can make the biggest impact in terms of CO2 reduction creates opportunity for significant new markets for biomass
- Biomass role in decarbonizing the economy:
 - Fully supply future Aviation/ Maritime/Rail (requires 75% of all feedstocks)
 - Only potential renewable liquid carbon source available to the **chemicals industry**.
 - Increase CO2 in the soil while helping farmers maximize profits on marginal lands, by providing valuable feedstocks for bioenergy production

Fuel and Chemical GHG impacts

Modeling and Analysis 🛛 🔂 Open Access

An assessment of the potential products and economic and environmental impacts resulting from a billion ton bioeconomy Jonathan N. Rogers & Bryce Stokes, Jennifer Dunn, Hao Cai, May Wu, Zia Haq, Harry Baumes First published: 21 November 2016 | https://doi.org/10.1002/bbb.1728 | Citations: 32

- Billion Ton Scenarios were "optimized" for different fuels/products (e.g., ethanol, jet)
- All scenarios includes a range of liquid transportation fuels, heat & power, chemicals, wood pellets, etc.
- All scenarios suggest significant GHG benefits vs. current biomass utilization.

The billion tons of sustainable biomass available in the US can go to a variety of products with large GHG benefits in all scenarios

> Current and Potential Avoided Annual GHG Emissions (Million tons of CO2e)

Biofuels, Bioproducts and Biorefining, Volume: 11, Issue: 1, Pages: 110-128, First published: 21 November 2016, DOI: (10.1002/bbb.1728)

EERE SAF Goals and Impact

GOALS

F	R&D: Cost Reduction with Maximum CO ₂ Reduction					
2	2022	\$3.00/GGE 60% greenhouse gas (GHG) reduction				
2	2030	\$2.50/GGE 70% GHG reduction				
Demonstration: Increase Commercial Supply of SAF						
2	2030	Demonstrate as many as 5 feedstock/technology				
		pathways at engineering scale to reduce risk for				
		commercial build out.				
		Equip traditional biofuels industry to transition to SAF with GHG reductions of $>70\%$.				
2	2040	Aggressive industrial build-out resulting in >17B gal SAF in market.				
2	2050	Aggressive industrial build-out resulting in 35B gal SAF in market – 100% projected aviation needs.				

LONG-TERM IMPACTS

60B gal renewable hydrocarbon fuels 40B pounds of renewable chemicals >450 million tons CO₂ reduced annually 1 million direct jobs

Billion Tons of Sustainable Biomass For SAF

Feedstock	Ex Conversion Processes	Feedstock Input million dry tons/yr	• 1 billion
Seed Oils	FAME/HEFA	9	• >45
Corn grain	Fermentation to EtOH/Alcohol to Jet	148	 Sustainal fossil en water co Land Us @\$4 com @\$6 and
Forestry resources & woody wastes	Gasification with	133	
Woody energy crops	Fischer Tropsch synthesis	50	
Agricultural residues	Isobutanol - Alcohol	149	49N
Herbaceous energy crops	to Jet	190	
Algae	Combined Algae Processing	24	• >10 diff
Algae Wet Wastes	Hydrothermal Liquefaction	24 78	transfor • Technolo
Currently used biomass - non-biofuel		238	some re remainir
TOTALS		1,103	

- 1 billion ton biomass (BtB) = >60 billion gal of fuel
 >450 MMT CO_{2e} reduction/yr
- Sustainability factors life cycle GHG emissions, fossil energy consumption, land allocation and water consumption.

Land Use change

- @\$40/dt 5.6 M/230 M acres will shift from commodity crops to energy crops and
- @\$60/dt 30M/230M acres crop land and 49M/460M acres pasture will shift
 - Differences made up in increased crop productivity (2% annually) and managedintensive grazing
- >10 different technologies will be necessary to transform diverse biomass into SAF.
- Technologies are at different maturity levels, with some ready for demo and some with substantial remaining R&D.

U.S. DEPARTMENT OF ENERGY

EERE has Developed Multiple SAF Pathways

Demo-Scale Projects Key to De-risk and Accelerate Commercialization

Government

t 🛛 🛡 Project Recipients and Partners 🥄

Banks