

A regional oilseed crop partnership for a resilient global bioeconomy

Journal:	GCB Bioenergy
Manuscript ID	Draft
Wiley - Manuscript type:	Platform
Date Submitted by the Author:	n/a
Complete List of Authors:	George, Sheeja; University of Florida North Florida Research and Education Center, ; University of Florida Seepaul, Ramdeo; Agronomy Geller, Dan; University of Georgia, College of Engineering Dwivedi, Puneet; University of Georgia Warnell School of Forestry and Natural Resources DiLorenzo, Nicolas; University of Florida North Florida Research and Education Center Altman, Rich; Commercial Alternative Aviation Fuels Initiative Coppola, Ed; Applied Research Associates Inc Emerald Coast Division Miller, Stephen; University of Florida College of Liberal Arts and Sciences Bennett, Rick; Nuseed Johnston, Glenn; Nuseed Streit, Leon; Nuseed Field, John; Colorado State University College of Natural Sciences Csonka, Steve; Commercial Alternative Aviation Fuels Initiative Philippidis, George; University of South Florida, Patel College of Global Sustainability Marois, Jim; University of Florida North Florida Research and Education Center Small, Ian; University of Florida North Florida Research and Education Center Wright, David; University of Florida North Florida Research and Education Center
Keywords:	bioenergy, Brassica carinata, southeast US cropping systems, low-carbon liquid fuel, winter crop, public-private partnership, sustainable aviation fuel

1 2		
2 3 4	1	A regional oilseed crop partnership for a resilient global bioeconomy
5 6	2	Sheeja George ¹ , Ramdeo Seepaul ¹ , Dan Geller ² , Puneet Dwivedi ³ , Nicolas DiLorenzo ⁴ , Rich
7 8	3	Altman ⁵ , Ed Coppola ⁶ , Stephen A. Miller ⁷ , Rick Bennett ⁸ , Glenn Johnston ⁸ , Leon Streit ⁸ , Steve
9 10 11	4	Csonka9, John Field ¹⁰ , Jim Marois ¹ , David Wright ¹ , Ian Small ¹ , George P. Philippidis ¹¹
12 13	5	¹ North Florida Research and Education Center, University of Florida, 155 Research Road,
14 15	6	Quincy, FL32351, United States
16 17 18	7	² College of Engineering, University of Georgia, 210 S Jackson St, Athens, GA 30602, United
19 20	8	States
21 22	9	³ Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street,
23 24 25	10	Athens, GA, United States
26 27	11	⁴ North Florida Research and Education Center, University of Florida, 3925 Highway 71,
28 29	12	Marianna, FL 32446, United States
30 31 22	13	⁵ RCB Altman Associates LLC, 402 Hang Dog Lane, Wethersfield, CT 06109, United States
32 33 34	14	⁶ Applied Research Associates Inc., 430 W 5 th St., Panama City, FL 32401, United States
35 36	15	⁷ Department of Chemistry, University of Florida, Leigh Hall, Gainesville, FL 32603, United
37 38	16	States
39 40 41	17	⁸ Nuseed, 990 Riverside Parkway Suite 140, West Sacramento, CA, 95605, United States
42 43	18	⁹ Commercial Aviation Alternative Fuels Initiative; caafi.org
44 45	19	¹⁰ Natural Resource Ecology Laboratory, Colorado State University, Campus Delivery 1599,
46 47 48	20	Fort Collins, CO 80523, United States
49 50	21	¹¹ Patel College of Global Sustainability, University of South Florida, 4202 E Fowler Ave,
51 52	22	Tampa, FL 33620, United States
53 54 55	23	Corresponding Author: Sheeja George; sheejageorge@ufl.edu
56 57		
58 59		1
60		

24 ABSTRACT

Brassica carinata or Ethiopian mustard, a non-edible oilseed brassica, is a low carbon, purpose-grown, and none-to-low indirect land-use change bioenergy feedstock for the production of drop-in Sustainable Aviation Fuel (SAF), biodiesel, renewable diesel, and a suite of value-added coproducts. Carinata oil converted to drop-in fuel using an ASTM approved Catalytic Hydrothermolysis process has already been successfully tested in commercial and military aviation. Carinata meal, the residue after oil extraction, is a high-protein feed supplement for livestock, poultry, and swine, and can also yield specialty products. The Southeast Partnership for Advanced Renewables from Carinata (SPARC) is a public-private partnership formed with a two-fold mission: (1) Removing physical, environmental, social, and economic constraints that prevent regional intensification of carinata production as a low-carbon feedstock for renewable fuel and coproducts; and (2) Demonstrating enhanced value across the entire value chain by mitigating risk to farmers and other stakeholders. The partnership's goal is to energize the US bioeconomy through sustainable agriculture and thus contribute to energy security and economic diversification. SPARC relies on a combination of cutting-edge multidisciplinary research and active industry engagement to facilitate adoption of the crop. This involves informing stakeholders along the entire supply chain, from producers to end-users, policymakers, influencers, and the public, about the opportunities and best practices related to carinata. This article provides context and background concerning carinata commercialization as a winter cash crop in the Southeast US for renewable fuels and bioproducts. The advances made to date in the areas of feedstock development, fuel and coproduct development, meal valorization, supply chain logistics, and stakeholder engagement are outlined.

GCB Bioenergy

2		
3 4	46	Keywords: bioenergy; Brassica carinata; winter crop; low-carbon fuel; public-private
5 6 7	47	partnership; southeast U.S. cropping systems; Sustainable Aviation Fuel
7 8 9	48	
10 11	49	1. Introduction
12 13	50	Coupling sustainable agriculture with the development of a bioeconomy seems like a perfect
14 15 16	51	marriage because the mandates for both are synergistic and complementary. Sustainable
17 18	52	agricultural practices should be resource-efficient, carbon building, natural resource enhancing,
19 20	53	all of which are foundational principles of a sustainable bioeconomy (RSB, 2018). However,
21 22 23	54	with increasing demand for bioenergy, conflicts arise regarding land use for energy crops to the
24 25	55	point that bioenergy is portrayed as an unsustainable option. This apparent conflict necessitates
26 27	56	taking a holistic approach to meeting bioenergy needs through sustainable agriculture.
28 29 30	57	Demand for Alternatives: The greenhouse gases (GHG) contributed by the transportation sector
31 32	58	are significant, and therefore, the sector's contribution to climate change cannot be understated.
33 34	59	Commercial aviation is responsible for 13% of transportation GHG emissions (US EIA 2020b).
35 36 27	60	According to the US EIA (2020a), the 400 billion liters global commercial jet fuel market has the
37 38 39	61	potential to grow to over 850 billion liters by 2050. However, the aviation sector is also the first
40 41	62	to make a significant commitment to carbon-neutral growth using non-fossil-sourced fuels or
42 43	63	sustainable aviation fuel (SAF) (CAAFI, 2020). Specifically, their goal is to reduce emissions by
44 45 46	64	50% by 2050 (Airlines for America; IATA 2020). In 2018, 7.4 million liters of SAF and over
47 48	65	one billion liters of renewable diesel were produced which fell short of the real demand (USDOE
49 50	66	EERE, 2020). The Federal Aviation Administration set a goal of using 15 billion liters/year of
51 52 53	67	renewable fuels by 2018. By 2030, civil aviation alone will consume close to 96 billion liters of
55 55 56 57	68	fuel making the airline industry a prime driver of carbon-neutral growth through the

displacement of fossil-based fuels by SAF. According to the Commercial Aviation Alternative Fuels Initiative (CAAFI) the airline industry's commitment to renewable fuels is emphasized by the over 1300 million liters worth of offtake agreements per year, already in place (Csonka, 2020). In the US, the Renewable Fuel Standard (USEPA, 2014) is targeting the use of over 136 billion liters of a combination of biofuels by 2022. The Renewable Energy Directive (RED) of the European Union (EU) is likewise promoting the use of renewables equivalent to about 66.6 billion liters of biodiesel by 2022 (Schnepf and Yacobucci, 2010; Env. Canada Inquiry Centre, European Parliament). All of this activity and policy underscores the serious global commitment to alternative fuels in the aviation sector. Besides, there is consumer preference for the replacement of fossil-based products, like plastics and other chemicals, by plant-derived biobased products of equal quality https://www.biopreferred.gov/BioPreferred/faces/pages/AboutBioPreferred.xhtml). Not all Biofuels are Equal: While it is well established that renewable fuels and biobased products are needed to successfully combat emissions and climate change, it is also important to take into account systems-level sustainability of procuring and using biofuels and bioproducts. System-level metrics to assess the life cycle impact of bioenergy production systems are important to ensure the sustainability benefits of these systems compared to fossil energy use (Wiebe et al., 2009; Hertwich et al., 2010). The largest responsibility in the biofuel supply chain could be attributed to the sustainability of producing the feedstock itself. Sugarcane, jatropha, corn, palm oil, and other crops are discouraged from the renewable space due to a variety of reasons, including loss of biodiversity and habitat, water consumption, and impact on carbon sequestration (Manning et al; 2015). Second-generation biofuels could circumvent the direct

Page 5 of 31

GCB Bioenergy

ן ר	
2 २	
כ ⊿	
- 5	
5 6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 24	
25	
32	
30	
38	
30	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

food competition issue but still cannot undo the fact that they directly compete for land meant for 91 food and fiber crops. 92

Concerns regarding food-versus-fuel conflict and other unintended consequences of first-93 generation biofuels have driven bioenergy research towards novel feedstock that minimize 94 competition with food-crop production (Tilman et al., 2009). The Carbon Offsetting and 95 96 Reduction Scheme (CORSIA) was set forth by the International Civil Aviation Organization (ICAO) as a framework of standards concerning the assessment and adoption of SAF that 97 demonstrate reduction of GHG emissions in international aviation (IATA, 2020). A CORSIA 98 99 approved SAF is a renewable or waste-derived fuel that meets the sustainability criteria of CORSIA (ICAO, 2018). As of June 2020, the United States and 82 other countries have 100 committed to participate in CORSIA from 2021-2026. Low carbon feedstocks, therefore, are 101 gaining prominence in the effort to develop renewable fuels (Scarlat et al., 2015; UNEP, 2011, 102 2014). 103

Bioenergy feedstocks can be sustainably produced through 'sustainable intensification' or, 104 extensification, which is the targeted use of underutilized land or biomass residues or the 105 intensification of conventional crop rotations (Heaton et al., 2013). Among such crop rotations, 106 107 purpose-grown oilseeds and other lipid feedstock with proven conversion pathways for their oil and favorable energy characteristics hold promise for meeting the regulatory specifications of 108 SAF and other renewable fuels. Specifically, the use of lipid feedstock as a source of renewable 109 110 liquid fuels is particularly significant because they can produce drop-in fuels that have been tested successfully in commercial and military operations, and are market-ready (ASTM, 2019). 111 112 Lipid feedstocks include waste greases, animal fats, municipal waste and sludge, algae, and 113 purpose-grown oilseed crops, such as carinata (*Brassica carinata*), camelina (*Camelina sativa*),

- 60

canola (Brassica napus, Brassica juncea, Brassica rapa), and pennycress (Thlaspi arvense) (Yilmaz & Atmanli, 2017; Gesch et al, 2015). Several industrial oilseed crops fit the criteria of no direct land-use change (Wicke et al., 2012; Shi et al; 2019) due to being non-food crops and non-land displacing especially since these are suited for winter production in most regions. Winter oilseeds, like carinata, are an example of temporal intensification in which feedstock crops are integrated into the fallow seasons of existing rotations, thus avoiding the direct and indirect land-use change impacts associated with agricultural intensification (Fargione et al., 2008) or displacement of existing crop production (Searchinger et al., 2008), respectively. They may also provide a means of achieving the ecosystem service benefits of cover-cropping, such as erosion control and reduced nutrient leaching, at a net profit to farmers rather than at a significant cost (Plastina et al., 2018). Winter oilseeds are known to be effective in various rotations to break disease and pest cycles, recycle nutrients in the soil, reduce nutrient leaching, and reduce or eliminate weed problems (Seepaul et al; 2016; Shi et al; 2019). Biomass returned to the soil with only the seed being harvested is a major differentiating factor between oilseed crops and other biomass crops. This results in maximum sequestration of carbon and return of nutrients to the soil for the following crops (Seepaul et al; 2019). Oilseeds for the Southeast US: Soybean, peanuts, cottonseed, rapeseed, sunflower, and canola are the major oilseeds grown in the US with soybeans being the most prominent. However, soybeans alone cannot meet the demand for biofuels. Moreover, they are a food crop and with high carbon intensity. So soybean alternatives are being pursued actively (Sindelair, 2015; Moser 2012; Hill, 2006; Bill Gibbons Personal Communication, 2020). Other oilseed crops gaining prominence due to their low indirect land-use change characteristics are canola, camelina, pennycress, rapeseed, mustard, and sunflower. These have superior agronomic, environmental,

Page 7 of 31

GCB Bioenergy

137	and market characteristics due to both oil and meal market applications (Moser, 2012). Oilseeds
138	have greater adaptability to local growing conditions, drought tolerance, low agricultural inputs,
139	compatibility with fallow land, and rotational fit with other cash crops (Embaye et al, 2018). The
140	Southeast US with its mild winters and ample annual rainfall is very amenable to year-round
141	agriculture with no impact on normal food and fiber production. Several oilseeds have been
142	explored for yield stability and rotational suitability in the region. Rapeseed with 35-40% oil
143	content has good biofuel potential due to its high erucic acid and reasonable seed yield that can
144	range from 1,000-1,600 kg per hectare (Wright, 2018). Camelina has very limited production in
145	the Southeast due to previous research indicating less than favorable yields and low yield
146	stability (Wright, 2018). Currently little to no research is pursued on camelina in this region as
147	compared to the Northern Plains and Western regions of the US. Among other oilseed species,
148	tung (Aleurites fordii) has about 18.5 to 20% oil content by weight, and orchards can produce
149	about 1,000 kg of fruit per hectare (Minogue, 2019). Pongamia (Millettia pinnata) is another
150	oilseed tree with potential in the biodiesel market that is suited to the Southeast. (Gilman et al.,
151	2018). Comparative field studies conducted in North Florida show that carinata has by far the
152	highest seed yield among oilseeds (Table 1). In replicated yield testing in North Florida, carinata
153	produced 2,800 kg/ha compared to canola (1,456 kg/ha) and camelina (952 kg/ha). In addition to
154	its superior oil yield, carinata contains 45% crude protein, which is used as an animal feed
155	supplement.
156	Table 1: Performance of oilseed crops averaged across several growing seasons at the North
157	Florida Research and Education Center in Quincy, FL.

Cron	Seed yield	Oil content	Oil yield	Crude Protein	Crude Fiber
Стор	(kg ha ⁻¹)	(%)	(L ha-1)	(%)	(%)

Camelina	952	35	361	45	11
Canola	1,456	43	679	41	11
Carinata	2,800	40	1,214	45	11

159 2.]. Addressing the Demand for A Low Carbon Bioeconomy

160 Ecosystem Services Afforded by Carinata

The Southeast US has over 5 million hectares of row crops producing corn, soybeans, peanuts, and cotton. Less than 10% of this land is cropped during the winter months. This fallow land is subject to topsoil erosion, leaching of excess nutrients from the previous crop, weed pressure, and other unfavorable factors leading to a cycle of negative land impact and untenable practices. Carinata has agronomic characteristics that suit the region for winter production without any indirect land use impact. It is resistant to seed shatter and less sensitive to drought, heat, and N deficiency compared to canola (Seepaul et al., 2016). It also has greater oil yield and higher biomass productivity (Gesch et al., 2015). It is one of only four crops in North America, and the only oilseed, that has received the Round Table of Sustainable Materials (RSB) certification (RSB, 2018) for sustainable oil and meal and a low indirect land-use change (ILUC) risk certification in South America. The RSB has developed one of the most robust sustainable frameworks for biofuels (Collotta et al., 2019). This differentiates carinata from other feedstocks as it is certified as a low carbon feedstock for fuel and non-GMO high protein meal. Thus, carinata is a winter cash crop that can seamlessly fit into the Southeast US cropping system with little to no augmentation of infrastructural requirements or knowhow. From an ecosystem services perspective, it provides the ecosystem services of a high residue cover crop (6,000-10,000 kg ha⁻¹per year) with over 40 kg of nitrogen and 90 kg of potassium returned to the soil in

Page 9 of 31

1	
2	
3	
4	
5	
6	
7	
8	
9 10	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27 20	
28	
29	
30	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40	
47 //Q	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

178	the residue. Though it requires reasonable amounts of nitrogen in season and especially during
179	its reproductive stages, it can extract nitrogen from the soil making it highly nutrient efficient
180	(Seepaul et al; 2020). This underscores its role in nutrient scavenging, which correlates to
181	reducing nutrient leaching. It also has a low water footprint needing water mostly during
182	reproductive stages. Water infiltration in a carinata system is greater than in a winter fallow
183	system. Nematode and weed pressure are significantly lower in the summer crops following
184	carinata, as compared to the fallow system (Seepaul, 2018a). Moreover, carinata has a moderate
185	weed risk potential (USDA-APHIS, 2014) with its low pod-shattering and dormancy (Patane and
186	Tringali, 2011). It supports over 50 species of pollinators and 75 species of non-pollinators,
187	thereby providing biodiversity benefits (Stiles, 2019).
188	Another ecosystem service value of winter cover crops is maintaining or improving soil organic
189	matter levels. Soil organic matter, often measured in terms of its carbon content (soil organic
190	carbon or SOC), is a key element of soil fertility affecting water infiltration, water-holding
191	capacity, and availability of nitrogen and other nutrients (Campbell et al., 2018). Soil carbon
192	levels reflect the dynamic balance between organic matter inputs and losses via heterotrophic
193	respiration. Cover cropping using crops like carinata increase total plant production over a given
194	agricultural rotation, generating more organic matter inputs to supplement SOC levels. Meta-
195	analysis has shown that cover cropping is on balance associated with increased SOC, particularly
196	in temperate climates and fine-textured soils (Jian et al., 2020). Such SOC enhancement provides
197	dual benefits of both improving soil health and productivity and sequestering atmosphere-
198	derived carbon (Paustian et al., 2016).
199	Every metric ton of carinata produced is associated with an additional ~1.2 ton of carbon in leaf,
200	stem, and root biomass available to supplement soil carbon levels. Accounting both for these
	9

new carbon inputs to the soil and the additional tillage operations associated with carinata cultivation, ecosystem modeling suggests that integrating a winter carinata crop into the cotton-cotton-peanut rotations common in the Southeast US would sequester carbon at an average rate of 15 (2–28) kg C ha⁻¹ y⁻¹. Carinata production does require supplemental nitrogen fertilizer, which leads to trace soil emissions of nitrous oxide (N₂O), a potent greenhouse gas (GHG). However, modeling efforts suggest that N₂O emissions from carinata production offset only 14% of the crop's carbon sequestration value, resulting in a net soil GHG balance equivalent to 48 (6-102) kg CO₂ sequestration per hectare per year (excluding all other positive life-cycle impacts of carinata). Feedstock of choice for proven conversion technologies: Carinata oil has high erucic acid (40-44%) concentrations as compared to canola (<1.0%). It also has a lower concentration of oleic acid (6-10%) and linoleic acid (14-17%) as compared to canola (58-62%) and 20-22%, respectively), and distiller's grain corn oil (26-29% and 47-54%, respectively). The high concentration of unsaturated fatty acids relative to saturated fatty acids makes carinata oil suitable for many conversion technologies, as unsaturated fatty acids are more reactive and form cycloparaffin and aromatic compounds more easily. Carinata oil has a higher molecular weight than soybean, canola, or jatropha, which results in a higher yield of hydrocarbon fuels and chemicals relative to oilseeds with greater C18. This yield increase is equivalent to over 13.7 MT/day for an almost 700MT/day commercial refinery using the Catalytic Hydrothermolysis Jet (CHJ) pathway, one of the ASTM approved pathways to produce commercial jet fuel from carinata oil. This pathway combined with hydrothermal cleanup (HCU) process (Applied Research Associates Inc.) reduces total metals to less than 10 ppm and phosphorus to less than 2 ppm. The first flight test using fuel produced from carinata performed better than fossil Jet A

Page 11 of 31

GCB Bioenergy

1		
2		
3		
4		
5		
6		
7		
8		
9		
1	0	
1	1	
1	2	
1	3	
1	4	
1	5	
1	6	
1	7	
1	8	
1	9	
2	0	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
2	7	
2	8	
2	9	
3	0	
3	1	
3	2	
3	3	
3	4	
3	5	
3	6	
3	/	
3	8	
ک م	9	
4	1	
4 1	ן ר	
4 1	2 2	
4 ∧	د ∧	
4 1	4 5	
4 1	5	
-+ /	0 7	
+ ⊿	י פ	
+ ⊿	0 0	
5	ر م	
5	1	
5	י כ	
5	∠ २	
5	ر ۵	
5	5	
5	5	
5	7	

58

59 60

fuel with a reduction in black carbon, oxides of nitrogen, and aerosol emissions. Fuels produced 224 from this process include renewable Jet A (50:50 blend with petroleum), renewable JP-5, 225 renewable marine diesel, ultra-low sulfur diesel, renewable naphtha and renewable chemicals. Jet 226 A can be used at 100% although it is currently approved at 50% by ASTM. ARA fuels from 227 carinata have the same hydrocarbon types and boiling range distribution as their petroleum 228 229 counterparts.

Coproduct-driven carinata bioeconomy: Carinata offers coproduct molecules with functions 230 other than fuel with significant economic benefits, as summarized in Table 2. While the seed oil 231 232 is mainly targeted for conversion to reduced hydrocarbon fuels, it is also the source of the most abundant coproduct, erucic acid (C22:1) that makes up 42% of the seed's fatty acid profile. In 233 principle, 23 kg of carinata seed can be produced from about 4 hectares of land and ultimately 234 provide 3,400 kg of erucic acid. This mono-unsaturated, 22-carbon fatty acid is non-digestible 235 by humans and somewhat rare among vegetable oils. To date it has been produced mostly from a 236 genetically modified high erucic acid rapeseed, HEAR, with over 50% erucic acid content, but 237 carinata offers the highest erucic acid content among non-GMO crops. Hydrogenation of erucic 238 acid gives behenic acid, a 22-carbon saturated fatty acid that has applications in hair products, 239 lubricants, paints, and detergents. Further reduction of behenic acid yields behenyl alcohol, 22-240 carbon saturated alcohol used as an emulsifier and thickener in cosmetics, but also as an FDA-241 approved topical anti-viral medication (Abreva®). Alternatively, erucic acid can be oxidized 242 243 selectively at its double bond to yield brassylic acid, a 13-carbon molecule that would be very challenging to synthesize from fossil fuels. Brassylic acid has been converted to nylon 13-13 and 244 shown to have thermal properties ($T_m = 183 \text{ °C}$) very similar to those of nylon 11 ($T_m = 190 \text{ °C}$), 245 246 which has been produced commercially by Arkema (as RilsanTM) for decades from the ricinoleic

2	
3	
4	
5	
6	
0	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
1/	
18	
19	
20	
21	
22	
25	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
25	
22	
36	
37	
38	
39	
40	
40	
41	
42	
43	
44	
45	
16	
40	
4/	
48	
49	
50	
51	
51 E2	
52	
53	
54	
55	
56	
57	
57	
58	
59	
60	

254

1

acid in castor seed oil. A niche application of brassylic acid is its cyclization with ethylene glycol
to yield ethylene brassylate, a valuable perfume ingredient. The byproduct of erucic acid
oxidation is pelargonic acid, a 9-carbon fatty acid that is the same byproduct obtained by the
industrial oxidation of oleic acid. Pelargonic acid is present in a variety of plants and has FDA
approval for use in foods, but is gaining popularity as an environmentally friendly herbicide,
fungicide, and sanitizer. The corresponding amides of erucic acid and behenic acid, erucamide
and behenamide, respectively, continue to be used as additives in plastics and coatings.

Table 2. Financial Benefits from Co-Products Unique to Carinata¹

Co-Products	Annual Market	Unit	Potential Annual
		Value	Income or Savings
Free fatty acids for erucic acid	>7,000 MT	\$0.80/lb	\$10-20M
recovery			
Glycerin to propylene glycol	0.2-4M MT	\$0.50/lb	\$10-20M
n-paraffins for LAB (linear	4.3B MT	\$0.80/lb	\$2-4M
alkylbenzene) production			
Crude glycerin animal feed		\$0.08-	\$0.5-1.0M
		0.10/lb	
Hydrogen savings	4.5M lKg/yr	\$0.50/lb	\$5M
Increase yield from high	13.64MT/day net		\$3M
molecular wt	increase		

2 256 *High protein meal for animal feed*: Livestock production in the Southeast US represents an

257 important economic activity, favorable weather and precipitation allow for a continuous supply

Page 13 of 31

GCB Bioenergy

of forages, which are the basis of livestock nutrition in the region. However, despite the abundance in forage quantity for livestock, forage quality can be limiting for livestock production. There is a constant need for protein supplementation in beef and forage systems in this region of the US. Common protein supplements for livestock in the region include byproducts from soybean, corn, and cotton, but price volatility and over-reliance on transportation of some of these byproducts from the Midwest US are some of the challenges faced by livestock producers in the Southeast when procuring protein supplements to meet cattle demands. Carinata meal has been documented to have great potential as a livestock supplement given its high protein concentration (Table 1) and the protein quality when used for ruminants (Schulmeister et al. 2019). Carinata meal fed as a protein supplement to beef heifers resulted in daily weight gain without any negative consequences on the attainment of puberty or thyroid hormone status (Schulmeister et al., 2019). When compared to common protein sources supplemented to cattle, such as cottonseed meal, distillers grains plus solubles, and soybean meal, carinata meal was similar in terms of ruminal metabolism and digestibility of nutrients (Schulmeister et al., 2019).

Carinata meal also contains glucosinolates, which are mustardy compounds that deter animal consumption. The most abundant compound, sinigrin, constitutes 4–7% of the meal. Its removal or decomposition through mild heating is important to make the feed more palatable. Another bitter component of the seed meal is sinapine with a reported content of up to 1.6%. Sinapine seems to be the seed's source of aromatics for initial lignin synthesis. It is a choline ester and its hydrolysis yields sinapic acid, which is the main extract of the seed meal when saponification conditions are employed. Sinapic acid possesses two methoxy groups and is structurally related to naturally abundant ferulic acid (one methoxy group) and coumaric acid (zero methoxy

281	groups), which are found as crosslinkers of the lignin and cellulose components in
282	lignocellulosic biomass. Interestingly, all three of these bioaromatics exhibit anti-oxidant and
283	anti-microbial functions. Ferulic acid (320 tons per year, natural) and coumaric acid (160 tons
284	per year, synthetic) are relatively small market commercial products that are used in cosmetics,
285	sunscreens, or as food preservatives. While there is no significant commercial production of
286	sinapic acid, presumably it could expand into the markets held by ferulic acid and coumaric acid,
287	especially as a food preservative, taking advantage of negative consumer feelings towards
288	probably harmful BHT (butylated hydroxytoluene) and BHA (butylated hydroxyanisole).
289	Another application of sinapic acid is its polymerization to high glass transition temperature (Tg)
290	bioaromatic polyesters. Fossil fuel-based polyethylene terephthalate (PET) has a softening
291	temperature (Tg) near 72 °C, a value suitable for many packaging applications, but not for hot
292	food or hot water applications. The novel polyesters, polyethylene coumarate, polyethylene
293	ferulate, and polyethylene sinapate have T_g values of 109, 113, and 118 °C, respectively. The
294	sinapic acid variant affords the highest Tg value and exceeds that of polystyrene (Styrofoam, PS,
295	95 °C), a polymer targeted for replacement because of its environmental impact. Moreover, the
296	fiber contained in carinata meal (Table 1) could be biochemically converted to value-added
297	organic acids and other commodity or specialty chemicals via enzymatic hydrolysis and
298	fermentation, similar to sugarcane bagasse (Lo et al., 2020).
299	3.]. Southeast Partnership for Advanced Renewables from Carinata

The purpose of SPARC: Sustainable agriculture seeks solutions that are resilient in the face of
 complex, interrelated challenges such as national security, climate change, preserving and
 enhancing natural resources, and economic diversification on the farm. SPARC was established
 to ensure that a carinata-based supply chain would provide renewable liquid fuels and green

Page 15 of 31

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 24	
54 25	
32	
30	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52 52	
55 51	
54	
56	
57	
58	
59	
60	

304	coproducts without undermining natural resources and socio-economic benefits in a region that is
305	amenable to sustainable farm diversification. It is by no means the first bioenergy project to unite
306	a multidisciplinary team under a common goal. Other USDA-NIFA funded Coordinated
307	Agricultural Projects (Northwest Advanced Renewables Alliance-NARA, Bioenergy Alliance
308	Network of the Rockies-BANR, Sustainable Bioeconomy for Arid Regions-SBAR, Integrated
309	Pennycress Research Enabling Farm and Energy Resilience-IPREFER, Southeast Partnership for
310	the Integrated Biomass Supply Systems-IBSS, and others; https://nifa.usda.gov/afri-regional-
311	bioenergy-system-coordinated-agricultural-projects) have the same guiding principle for their
312	respective feedstock group and regions of operation. SPARC employs a systematic approach to
313	building and disseminating a body of scientific information to meet stakeholder needs and
314	address market opportunities. It is designed to respond to changes in mandates in the renewable
315	fuels space and deliver scientifically vetted metrics to key stakeholders in a format most relevant
316	to them. It is generating useful literature through multidisciplinary research on carinata-based
317	cropping systems, fuel and coproduct development from carinata, sustainable supply chain
318	establishment, and workforce development. Toward that end, SPARC's objectives are to:
319	(1) Generate feedstock in the Southeast US using superior, high-yielding carinata genotypes and
320	best management practices (Kumar et al., 2020)
321	(2) Demonstrate conversion of carinata oil to sustainable aviation fuel, biodiesel, renewable
322	diesel, and other coproducts
323	(3) Evaluate carinata seed protein as an animal feed supplement and source of bioproducts
324	(4) Conduct a systems-level life cycle analysis integrated with a techno-economic analysis
325	(5) Demonstrate commercialization potential by leveraging existing industry partnerships

326 (6) Provide a cost-revenue analysis through transportation and site selection optimization tools,

327 assess supply chain resiliency

328 (7) Through outreach programs develop and implement processes to ensure that all stakeholders329 realize value

(8) Provide education to K-12, undergraduate, and graduate students and prepare the bioenergyworkforce of tomorrow.

Ultimately, through these objectives, the partnership hopes to enable a mechanism of trust
among the entire carinata value chain to ensure the commercial development of this renewable
liquid fuel feedstock in the Southeast US.

Enabling a secure feedstock supply within the sustainability framework: While there is a demonstrated need for renewable fuels and coproducts, supply chain establishment mainly hinges on uninterrupted feedstock supply. That directly correlates to farmer awareness and adoption, farmer risk alleviation and confidence building, consistent crop performance, and tailoring management practices that align with the principles of sustainable production of renewable fuel feedstock. SPARC aims to develop a body of knowledge and practices that will support the sustainable expansion of carinata feedstock supply using high grain and oil yielding carinata genotypes, best management practices (BMPs), and risk management tools through field and controlled experiments across FL, GA, AL, MS, SC, NC. Although management aspects of carinata after frost events are outlined (Mulvaney et al., 2018), frost tolerance has emerged as one of the top traits in regards to crop improvement/selection to make carinata suited to more northern geographies within the Southeast US. As high yielding varieties continue to be identified, SPARC continues to focus on identifying factors that ensure yield stability relative to field variability for consistent high production and risk elimination. Hybrids have routinely

Page 17 of 31

GCB Bioenergy

1 2	
3	
4	
5 6	
7	
8	
9 10	
11	
12	
13 14	
15	
16 17	
18	
19	
20 21	
22	
23	
24 25	
26	
27	
28 29	
30	
31 32	
32 33	
34	
35 36	
37	
38	
39 40	
41	
42	
43 44	
45	
46 47	
48	
49	
50 51	
52	
53	
54 55	
56	
57 50	
58 59	
60	

outperformed commercial varieties in preliminary evaluations; therefore, developing hybrids that 349 are cold tolerant with high harvest index and high oil levels (46-47%) is a priority for SPARC. 350 High biomass production also remains an important goal for maximizing carbon sequestration. 351 Early maturing and herbicide-resistant varieties are important traits as SPARC works toward 352 making the transition to carinata as seamless as possible for the farmer. Nuseed, an industry 353 354 partner of SPARC, is the holder of the world's most extensive carinata germplasm collection and are developing carinata as one of the crops in their "Value Beyond Yield" portfolio. Commercial 355 and research operations in various countries (Argentina, Uruguay, Canada, France, and Southeast 356 357 US) facilitate robust data collection in various geographies, soil types, climates, and socioeconomic scenarios. Expansion into multiple geographies not only ensures a year-round supply 358 of the feedstock but also enhances learning and knowledge-sharing across geographies (Bennett, 359 2020). Aspects of crop modeling to understand the crop's growth and development as it relates to 360 ecoedaphic factors with a focus on yield maximization and carbon intensification are being 361 investigated. 362 Product development and farmer training to ensure in-season crop monitoring and protection are 363

key steps to scaling carinata in the Southeast US. SPARC has been screening the efficacy and 364 safety of multiple herbicides used in major agronomic row crops and some vegetable crops to 365 identify those that can provide adequate weed control for carinata without reducing yield from 366 herbicide injury. This work led to the identification of several commercial herbicides for 367 368 effective weed control against broadleaved and grass weeds. Likewise, disease and insect thresholds of common pests are being determined to help with early detection, intervention, and 369 prevention. Integration of fertility management is important on the characteristic sandy soils of 370 371 this region to meet crop demand and limit nutrient movement to water bodies and

groundwater. Related to this is an effort to evaluate the potential to reduce the use of inorganic sources of nitrogen by replacing them with organic sources, such as poultry litter. Existing common cropping systems in the region include corn (Zea mays L.), cotton (Gossypium hirsutum L.), peanut (Arachis hypogaea L.), soybean (Glycine max (L.), and sorghum (Sorghum bicolor (L.) Moench). The effects of preceding summer crops on winter carinata production as well as the effects of carinata production on subsequent summer crops are being studied in multiyear crop rotation studies. These studies lend themselves to robust integrated life cycle analysis incorporating environmental and economic elements of a carinata rotation system. Utilizing precision agriculture techniques to maximize yield and reduce inputs at a system level is critical for sustainability and profitability. Finally, improving the fit of carinata by using harvest aids to facilitate timely planting of summer crops is another critical line of research that helps identify compatible products (Seepaul et al., 2018b).

Developing useful system metrics: The purpose of an interdisciplinary approach is to bring together field experts and modelers, end-users, and policymakers to determine what metrics will help make the business case for each stakeholder. SPARC's hydrology team uses the Soil and Water Assessment Tool (SWAT) to simulate and estimate changes in runoff and overall effects of carinata production on runoff quality and quantity at a field-scale. The hydrologic simulations will provide an assessment of the potential for carinata production to generate secondary impacts associated with altered streamflows, increased loading of sediment, phosphorus, and nitrogen, and eutrophication relative to other regional land uses. Comprehensive life cycle analysis of the carinata crop rotation system (winter carinata versus winter fallow followed by traditional summer crops) using best management practices are underway to help compare the carbon intensities of other feedstock with carinata globally and regionally. These analyses will help

Page 19 of 31

GCB Bioenergy

identify opportunities to tailor location and/or management to maximize yield, nutrient and water use efficiency, and carbon sequestration at the farm level while reducing GHG emissions from the overall seed-to-fuel use operation.

Building social support through stakeholder engagement: SPARC's social science experts along with the land grant extension system began with broad questions directed to the many stakeholders involved in the carinata bioeconomy. Through surveys at field days and phone interviews, they constructed a scalar model of the barriers and opportunities relevant to producers in the Southeast US. This information is directed back to SPARC and represents the farmers' collective voice as researchers continue their work to develop an improved "package" suited to farmers in the region. A Carinata Community of Practice (CCoP) has been established in the region to serve as a platform of learning and support for carinata growers. The degree to which farmers rely on one another for advice and inspiration cannot be understated, and the CCoP aims to capitalize on this practice by identifying "champion" carinata growers in various regions and facilitation knowledge diffusion to other farmers. Key informant interviews led to the understanding of barriers and perceived opportunities for carinata adoption in the Southeast US (Christ et al; 2020). The findings identified farmer unfamiliarity with carinata as the most significant barrier within the farm gate, whereas market proximity and limitations of crop insurance were the topmost barriers beyond the farm gate. Unfamiliarity with, or limited knowledge of, carinata and consequent spread of misinformation could potentially be major obstacles in the path of carinata adoption. Continued deliberate engagement with farmers will be crucial to maintaining a healthy feedback mechanism of learning and improving and building mutual trust and confidence (Christ et al; 2020). SPARC aims for the CCoP to eventually be

managed by the farmers themselves, ensuring ownership in the creation of learning opportunities and its endurance as a driver of producer adoption beyond SPARC. Traditionally viewed as non-sustainable, contract farming today could be considered more progressive and environment friendly and risk-free depending on the terms of the contract. These agreements are moving away from the model of input-intensive to input-conservative and from structural demands for high-yield production to concepts of "Value Beyond Yield" (Nuseed). These shifts are an attempt to protect natural resources and further incentivize farmers for adopting sustainable practices and could perhaps reduce some of the aforementioned barriers (Christ et al; 2020). Increasing constraints providing market access only to sustainably produced goods come from recognizing the need to address climate change mitigation and natural resource protection. SPARC's stakeholders also include the consumers that demand transparency in the process of manufacturing and movement of goods. As a result, educating K-12, undergraduate, and graduate students on the concepts, technologies, and business of bioenergy helps fill information gaps and prepares the green workforce of the future. Key to these efforts has been a program to educate and provide classroom material to K-12 teachers about sustainable agriculture and bioenergy using carinata as the model crop for enhancing the three pillars of sustainability (environmental, economic, and social). The regional focus on global resilience: SPARC has both an opportunity and an obligation to add value by focusing equally on all aspects of the carinata value chain. The supply chain team

436 seeks to ensure that all participants meet at a minimum their investment thresholds in our

437 collective pursuit. The importance of a local/regional supply chain is best stated by the

439 Georgia, who have engaged with SPARC during the initiation, planning, and now execution

perspective of state economic development stakeholders from the states of Alabama, Florida, and

Page 21 of 31

GCB Bioenergy

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
27	
25	
20	
27	
28	
29	
30	
31	
32	
33	
21	
25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
11	
 / [
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
58	
59	

60

phases of the project. Dialogue indicates that there is as much as a 5X multiplier that can be 440 applied to farm jobs by developing a local/regional supply chain (Chris Chammoun, Georgia 441 Department of Economic Development, Personal Communication). The public-private 442 partnership positions SPARC well to orchestrate a sustainable, viable supply chain development. 443 The partners with valuable input from the industry and government members of the advisory 444 board help define the near-term and long-term objectives of making a market reality a carinata-445 driven bioeconomy in the Southeast US. Significant contributions from the supply chain team 446 include a bottoms-up distribution optimization analysis using the Freight and Fuel Transportation 447 Optimization Tool-FTOT of the US Department of Transportation and the Federal Aviation 448 Administration to evaluate both the economic and environmental performance of the carinata 449 feedstock and product distribution system. (https://github.com/VolpeUSDOT/FTOT-450 Public/wiki/Documentation-and-Scenario-Datasets). Moreover, supply chain resilience modeling 451 is undertaken to assess the impact of natural phenomena and market volatility on the carinata 452 bioeconomy. The supply chain team works horizontally across all SPARC teams to ensure full 453 integration and engagement of crucial state agencies, such as Departments of Agriculture, 454 Natural Resource Conservation Service, rural development, state departments of economic 455 authority, land grant university extensions, commercial and military aviation, Department of 456 Energy, U.S. Department of Agriculture, Environmental Protection Agency, Federal Aviation 457 Administration, Department of Transportation, environmental NGOs, green product end-users, 458 459 and manufacturers, who are aligned in their interests in renewable energy and products. 4.] Conclusion 460

461 Carinata is a winter cover crop that can be produced sustainably on primarily unutilized fallow462 lands to meet market demand for drop-in liquid fuels, animal protein, and valuable coproducts

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
10
20
∠∪ ⊃1
∠ I วว
22
23
24
25
26
27
28
29
30
31
37
22
27
34 25
35
36
37
38
39
40
41
42
43
44
45
46
40 47
4/ 10
40
49 50
50
51
52
53
54
55
56
57
58
59
60
00

1

463	that are not fossil-fuel based, while generating extra off-season income for farmers and
464	downstream processors. From what began as modest trials with a few carinata varieties in
465	Quincy, FL, this project has grown into a large public-private undertaking to establish a carinata
466	bioeconomy in the Southeast US. This progress could not be achieved without a promising
467	product that has the potential to deliver on the principles and criteria of sustainability in the
468	renewable fuel arena. Essentially, what SPARC has set out to do is to create a toolbox for
469	success for every stakeholder in the carinata enterprise (George, 2018). This encompasses the
470	farmers, the handlers and warehouse owners, the transportation businesses, the fuel
471	manufacturers, the technology developers and licensees, the investors, the regulatory agencies,
472	the state, and federal policymakers, the workforce engaged in this enterprise, the commercial and
473	military aviation, the animal and feed producers, and the consumers at large. SPARC's resolve is
474	to make the carinata supply chain not only efficient but also resilient to uncertainties whether
475	emanating from the weather or the marketplace (George, 2018). Adding to that is a strong
476	commitment to sustainability as it pertains to protecting our natural resources and enhancing
477	socio-economic benefits. That commitment has our team looking at ways to optimize the supply
478	chain in a way that minimizes impact on the environment while maximizing profitability.
479	Mitigating risk to the farmer and all the stakeholders downstream of the farm gate continues to
480	be central to the SPARC mission. Integrating precision agriculture strategies has emerged as a
481	top priority to precisely manage water, nutrients, and other inputs and optimize carbon
482	sequestration taking into account field variability. Collecting extensive data that document
483	inputs, outputs, and effects on natural resources (soil, water, air) to perform a comprehensive life
484	cycle analysis will be important as a comparative metric for carinata with other oilseeds and
485	biomass feedstock. Techno-economic analysis of the feedstock and technology in its current state

Page 23 of 31

1 2		
2 3 4	486	is the immediate priority to properly guide SPARC activities and provide insight to industry,
5 6 7 8 9 10 11	487	end-users, and stakeholders regarding investment strategies, policy modification, and near- and
	488	long-term targets. The papers in this series are some of the initial outcomes of the first three
	489	years of SPARC research involving agronomists, crop physiologists, weed specialists, nutrient
12 13	490	specialists, plant pathologists, crop modelers, cropping system modelers, hydrologists,
14 15	491	economists, environmental modelers, chemical engineers, and chemists united by the common
16 17	492	passion for sustainable bioenergy development through carinata.
19 20	493	Acknowledgments: The authors acknowledge funding from USDA-NIFA Bioenergy-
21 22	494	Coordinated Agricultural Projects Grant # 2016-11231. The authors acknowledge the 100+
23 24 25	495	members of SPARC including academic faculty, graduate students, and postdoctoral associates,
25 26 27 28 29 30 31 32 33 34	496	industry scientists, staff, business development and regulatory experts, SPARC advisory board
	497	and other support staff contributing to the success of this project. Jocelyn Wahlgren of ARA Inc.
	498	reviewed parts of this manuscript.
	499	Contributing Authors:
35 36	500	SG is Project Manager; DW is Project Director; IS is co-Project Director; RS is Lead, Feedstock
37 38	501	Development Team; DG is Lead, Extension Team; GP is Lead, Education and Workforce
39 40	502	Development Team; PD is Lead, Systems Metrics Team; JF is Systems Metrics Team member
41 42 43	503	and Daycent Model expert on the team; RA is Lead, Supply Chain Team; EC is Lead, Fuels, and
44 45	504	Coproduct Development Team; ARA Fuels Team Lead; NDL is Lead, Meal Valorization Team;
46 47	505	SM is Coproduct Team member and coproduct chemistry expert on the team; SC is Advisory
48 49 50	506	Board Chair; JM, RB, LS, GJ are advisory board members. RB, GJ, LS are Nuseed-carinata
51 52	507	liaisons to SPARC.
53 54	508	References
55 56		
57 58		23
59 60		

509	1.	Airlines for America. (2020). "Airlines Fly Green". https://www.airlines.org/airlines-fly-
510		green/.
511	2.	ASTM. (2019). ASTM D7566. Standard specification for aviation turbine fuel
512		containing synthesized hydrocarbons. West Conshohocken, PA: ASTM International.
513	3.	Bennett, R. (2020). The Nuseed carinata R&D and commercial program. SPARC PLUG
514		Stories. www.sparc-cap.org/sparc plug/.
515	4.	Campbell, E. E., Field, J. L., and Paustian, K. (2018). Modelling soil organic matter
516		dynamics as a soil health indicator. In D. Reicosky (Ed.), Managing soil health for
517		sustainable agriculture: Vol. Volume 2: Monitoring and management. Burleigh Dodds
518		Science Publishing. http://dx.doi.org/10.19103/AS.2017.0033.21.
519	5.	Christ, B., Bartels, W.L., Broughton, D., Seepaul, R. Geller, D. (2020). In pursuit of a
520		homegrown biofuel. Navigating systems of partnership stakeholder knowledge and
521		adoption of Brassica carinata in the SE US. Energy research and social science.
522		https://doi.org/10.1016/j.erss.2020.101665.
523	6.	Collotta, M., Champagne, P., Tomasoni, G., Alberti, M., Busi L. Mabee, W. (2019).
524		Critical indicators of sustainability for biofuels: An analysis through a life cycle
525		sustainability assessment perspective. Renewable and Sustainable Energy Reviews.
526		https://doi.org/10.1016/j.rser.2019.109358.
527	7.	Commercial Aviation Alternative Fuels Initiative (CAAFI). (2019). "Fuel Readiness
528		Level (FRL)." http://www.caafi.org/tools/Fuel_Readiness_Level.html.
		24
	509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 522 523 524 525 526	509 1. 510 2. 511 2. 512 3. 513 3. 514 4. 515 4. 516 5. 517 5. 518 5. 520 5. 521 5. 522 6. 523 6. 524 5. 525 5. 526 7. 528 7.

1 2		
2 3 4	529	8. Csonka, S. (2018). Sustainable Alternative Jet Fuel (SAJF), Progress, challenges, and
5 6	530	path forward. Sustainable Aviation Biofuel Work Group Meeting, Seattle, WA,
7 8	531	September 17, 2018.
9 10 11	532	9. Csonka, S. (2020). Celebrating National Aviation Day. How sustainable aviation fuel is
12 13	533	tied to future sustainability and success of the enterprise. OpEd by Executive Director,
14 15 16	534	Commercial Alternative Aviation Fuels Initiative-CAAFI.
16 17 18	535	http://www.caafi.org/news/pdf/CAAFI_OpEd_2020_National_Aviation_Day.pdf.
19 20 21	536	10. Directive 2009/28/EC of the European parliament and of the council of 23 April 2009.
22 23	537	(2009). Official J. European Union 140:16-62.
24 25 26	538	https://doi.org/10.3000/17252555.L_2009.140.eng
27 28	539	11. Embaye, W.T., Bergtold, J.S., Archer, D., Flora, C., Andrango, G., Odening, M., Buysse,
29 30 31	540	J. (2018). Examining farmer's willingness to grow and allocate land for oilseed crops for
32 33 34	541	biofuel production. Energy Economics. 71: 311-320.
35 36	542	12. Environment Canada. (2013). Canada's emission trends. En81-18/2013E-PDF. Gatineau
37 38 39	543	(QC), Canada: Environment Canada.
40 41 42	544	13. Fargione, J., Hill, J., Tilman, D., Polasky, S., Hawthorne, P. (2008). Land clearing and
42 43 44	545	the biofuel carbon debt. Science, 319(5867), 1235-1238.
45 46	546	14 George S (2018) Looking back and abead SPARC PLUG Stories, www.spare
40 47 48	547	cap.org/sparc-plug/
49 50	548	
50 51 52	549	15. Gesch, R.W., Isbell T.A., Oblath E.A., Allen B.L., Archer, D.W., Brown J., Hatfield,
53 54	550	J.L., Jabro, J.D., Kiniry, J.R., Long, D.S., and Vigil M.F. (2015). Comparison of several
55 56 57		
57 58		25
59 60		

1 2		
2 3 4	551	brassica species in the north central US for potential jet fuel feedstock. Industrial crops
5 6 7	552	and products. 75:2-7.
8 9	553	16. Gilman, E.F., Watson, D.G., Klein, R.W., Koeser, A.K., Hilbert, D.R., McLean, D.C.
10 11 12	554	(1993; revised 2018). Pongamia pinnata: Pongam. https://edis.ifas.ufl.edu/st498.
13 14 15	555	17. Heaton, E. A., Schulte, L. A., Berti, M., Langeveld, H., Zegada-Lizarazu, W., Parrish, D.,
15 16 17	556	& Monti, A. (2013). Managing a second-generation crop portfolio through sustainable
18 19	557	intensification: Examples from the USA and the EU. Biofuels, Bioproducts and
20 21 22	558	Biorefining, 7(6): 702–714.
23 24	559	18. Hertwich, E.G., van der Voet, E., Tukker, A. (2010). Assessing the environmental
25 26 27	560	impacts of consumption and production. Priority Products and Materials. Unitd Nations
27 28 29	561	Environment Programme. http://www.unep.fr/shared/publications/pdf/dtix1262xpa-
30 31	562	priorityproductsandmaterials_report.pdf.
32 33 34	563	19. Hill, J., Nelson, E., Tilma, D., Polasky, S., Tifany, D. (2006). Environmental, economic
35 36 27	564	and energetic costs, benefits of biodiesel and ethanol biofuels. Proceedings of the
37 38 39	565	National Academy of Sciences. 103: 11206-11210.
40 41 42	566	20. International Air Transport Association (IATA). (2020). "Carbon Offsetting Scheme for
43 44	567	International Aviation (CORSIA)." Accessed April 2020.
45 46	568	https://www.iata.org/en/policy/environment/corsia/.
47 48 49	569	21. International Civil Aviation Organization (ICAO). (2018). "Sustainabel Aviation Fuels
50 51	570	Guide". https://www.icao.int/environmental-
52 53 54	571	protection/documents/sustainable%20aviation%20fuels%20guide_100519.pdf.
55 56 57 58 59		26
60		

Page 27 of 31

1 2		
3 4 5 6 7 8 9 10 11 12	572	22. Jian, J., Du, X., Reiter, M. S., and Stewart, R. D. (2020). A meta-analysis of global
	573	cropland soil carbon changes due to cover cropping. Soil Biology and Biochemistry, 143,
	574	107735. https://doi.org/10.1016/j.soilbio.2020.107735.
	575	23. Kumar, S, Seepaul, R., Mulvaney, M.J., Colvin, B., George, S., Marois, J.J., Leon, R.,
12 13 14	576	Wright, D.L., and Small, I.M. (2020). Brassica carinata genotypes demonstrate potential
15 16	577	as a winter biofuel crop in southeast United States. Industrial Crops and Products. 150:
17 18 19	578	112353.
20 21	579	24. Leon, R.G., Ferrell, J.A., and Mulvaney, M. J. (2017). Carinata tolerance to
22 23 24	580	preemergence and post emergence herbicides. Weed Technology. 31(6): 877-882.
25 26	581	25. Lo, E., Brabo-Catala, L., Dogaris, I., Ammar, E.M., Philippidis, G.P. (2020).
27 28 29 30 31	582	Biochemical conversion of sweet sorghum bagasse to succinic acid. Journal of
	583	Bioscience and Bioengineering. 129: 104–109.
32 33 34	584	26. Manning, P., Taylor, G., Mick, E.H. (2015). Bioenergy, food production and
35 36	585	biodiversity- An unlikely alliance. Global Change Biology Bioenergy 7, 570-576. doi:
37 38 39	586	10.1111/gcbb.12173.
40 41	587	27. Minogue, P. (2019). "Tung Oil Production in
42 43	588	Florida". EDIS https://doi.org/10.32473/edis-fr420-2019.
45 46	589	28. Moser, B.R. (2012). Biodiesel from alternative oil feedstock camelina and field
47 48 49	590	pennycress. Biofuels. 3: 193-209.
50 51 52	591	29. Mulvaney, M.J., Seepaul, R., Small, I., Wright, D., Moraes, S-P., Crozier, C., Whipker,
53 54	592	B., Leon, R. (2018). Frost damage of carinata grown in the southeastern US. EDIS
55 56	593	edis.ifas.ufl.edu/ag420.
57 58 59		27
60		

3 4	594	30.	Patanè, C., & Tringali, S. (2011). Hydrotime analysis of ethiopian mustard (Brassica
5 6	595		carinata A. Braun) seed germination under different temperatures. Journal of Agronomy
7 8 9	596	;	and Crop Science. 197(2): 94-102.
10 11 12	597	31.	Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith, P. (2016).
12 13 14	598		Climate-smart soils. Nature, 532(7597), 49–57.
15 16 17	599	32.	Plastina, A., Liu, F., Sawadgo, W., Miguez, F., Carlson, S., and Marcillo, G. (2018).
18 19	600		Annual Net Returns to Cover Crops in Iowa. Journal of Applied Farm Economics, 2(2).
20 21 22	601	:	https://docs.lib.purdue.edu/jafe/vol2/iss2/2.
23 24	602	33.	RSB. (2018). CRSB, Principles and Criteria. Reference code RSB-STD-01-010 v.2.1.
25 26 27	603	-	Roundtable of Sustainable Biomaterials.
28 29 30	604	34.	Scarlat, N., Dallemand, J.F. Monforti-Ferrario, F., Nita, V. (2015). The role of biomass
31 32	605		and bioenergy in a future bioeconomy. Policies and facts. Environmental Development,
33 34 35	606		15: 3-34. http://dx.doi.org/10.1016/j.envdev.2015.03.006.
36 37	607	35.	Schnepf R., Yacobucci, B.D. (2010). Renewable fuel standard (RFS): Overview and
38 39 40	608		Issues. Congressional Research Service Report for Congress. CRS 7-5700. www.crs.gov.
41 42	609	36.	Schulmeister, T., Moreno-Ruiz, M., Silva, G.M., Garcia-Ascolani, M., Ciriaco, F.M.,
43 44 45	610		Henry, D.D., Lamb, C.G., Dubeux, J.C.B., DiLorenzo, N. (2019). Evaluation of Brassica
46 47	611		carinata meal on ruminant metabolism and apparent total tract digestibility of nutrients in
48 49 50	612	·	beef steers.
51 52	613	37.	Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J.,
53 54 55	614		Tokgoz, S., Hayes, D., & Yu, T. H. (2008). Use of US croplands for biofuels increases
56 57 58 59 60			28

1

615	greenhouse gases through emissions from land-use change. Science, 319(5867), 1238-
616	1240.
617	38. Seepaul, R., George, S., Wright, D.L. (2016). Comparative response of Brassica carinata
618	and Brassica napus vegetative growth, development and photosynthesis to nitrogen
619	nutrition.
620	39. Seepaul, R. Small, I.M., Mulvaney, M.J., George, S., Leon, R.G., Moraes, S.V., Geller,
621	D., Marois, J.J., Wrght, D.L. (2018a). Carinata, the sustainable crop for a bio-based
622	economy: 2018-2019 production recommendations for the southeastern united states.
623	Edis.ifas.ufl.edu/pdffiles/ag/ag38900.pdf.
624	40. Seepaul, R, Marois, J., Small, I.M., George, S., Wright, D.L. (2018b). Optimizing
625	swathing and chemical desiccant timing to accelerate winter carinata maturation.
626	Agronomy Journal. 110: 1379-1389.
627	41. Seepaul R., Mulvaney M.J., Small I.M., George S., Wright D.L. (2020). Carinata growth,
628	yield and chemical composition responses to nitrogen fertilizer management. Agronomy
629	Journal. 2020:1–15. https://doi.org/10.1002/agj2.20416.
630	42. Shi, R., Archer, D.W., Pokharel, K., Pearlson, M.N., Lewis, K.C., Ukaew, S., Shonnard,
631	D.R. (2019). Analysis of renewable jet from oilseed feedstock replacing fallow in the US
632	northern great plains. ACS Sustainable Chemistry and Engineering. 7: 18753-18764.
633	DOI: 10.1021/acssuschemeng.9b02150.
634	43. Sindelair, A.J., Schmer, M.R, Gesch, W., Orcella, F., Eberle, C.A., Thom, M.D., Archer,
635	D.W. (2017). Winter oilseed production for biofuel in the US corn belt. Opportunities
636	and limitations. Global Change Biology Bioenergy 9: 508-524; doi:10.1111/gcbb.12297.
	29
	 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

2 3	637	44. Stiles, S. (2019). Maximizing Ecosystem Services provided to the New Oil
4 5	629	Crop Prassica carinata Through Londscope and Arthropod Diversity Electronic Theses
6 7	030	Crop Brassica carmana Through Landscape and Arthropod Diversity. Electronic Theses
7 8 9 10 11 12	639	and Dissertations. 3154. https://openprairie.sdstate.edu/etd/3154.
	640	45. Tilman, D., Socolow, R., Foley, J. A., Hill, J., Larson, E., Lynd, L., Pacala, S., Reilly, J.,
13 14	641	Searchinger, T., Somerville, C., Williams, R. (2009). Beneficial Biofuels-The Food,
15 16 17	642	Energy, and Environment Trilemma. Science. 325 (5938): 270-271.
18 19	643	46. U.S. Energy Information Administration (EIA). (2020a). "Annual Energy Outlook 2020."
20 21 22	644	Table 47, Air Travel Energy Use.
23 24	645	https://www.eia.gov/outlooks/aeo/data/browser/#/?id=57-
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	646	AEO2020&cases=ref2020&sourcekey=0.
	647	47. US Department of Agriculture- Animal and Plant Health Inspection Service. (2014).
	648	Weed risk assessment for <i>B. carinata</i> A. Braun (Brassicaceae)-Ethiopian mustard.
	649	48. U.S. Department of Energy. Office of Energy Efficiency and Renewable Energy. (2020).
	650	Sustainable Aviation Fuel: Review of Technical Pathways.
	651	49. U.S. Energy Information Administration (EIA). (2020b). July 2020 Monthly Energy
	652	Review." https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf.
	653	50. U.S. Environmental Protection Agency. (2014). Regulation of fuels and fuel additives:
	654	RFS Pathways II and technical amendments to the RFS standards and E15misfueling
	655	mitigation requirements.
50 51	656	51. Wicke, B., Verweij, P., van Meijl, H., van Vuuren, D.P., Faaij, A.P.C. (2012). Indirect
52 53	657	land use change: a review of existing models and strategies for mitigation. Biofuels 3:1,
54 55 56	658	87-100, DOI: 10.4155/bfs.11.154.
57 58 59 60		30

60

1 2		
- 3 4	659	52. Wiebe K., Croppenstedt, A., Raney, T., Skoet, J., Zurek, M., Tschirley. (2008).
5 6 7	660	Environmental Impacts of Biofuels. Biofuels Prospect Risks Opportunities. 55-71.
8 9	661	53. Wright, D., Small, I.M. (2011; Revised 2018). Camelina production in Florida. EDIS-SS
10 11 12	662	AGR-340.edis.ifas.ufl.edu/ag350.
13 14 15	663	54. Yilmaz, N., Atmanli, A. (2017). Sustainable alternative fuels in aviation. Energy 140:
16 17	664	1378-1386 http//dx.doi.org/10.1016/j.energy.2017.07.077.
18 19 20 21	665	
21 22 23	666	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 546 47 48 49 50 51 52 53 54 55	667	
57 58 59		31