Carinata Sclerotinia stem rot advisory system

Ian Small – University of Florida
Kira Bowen and Austin Hagan – Auburn University

2017 Carinata Summit

Quincy, Florida

March 30th, 2017

Managing disease risk

 Sclerotinia stem rot (SSR) and pod rot are a potential threat to carinata production

- Risk will increase with:
 - Scaling of production
 - Increased frequency of carinata production

Stem rot

Pod rot

Photo credit: R. Seepaul

Life cycle of Sclerotinia sclerotiorum

Sclerotinia stem rot management

- Plant disease resistance should be cornerstone of management plan
 - Select for disease resistance in advanced varieties
- Rotate crops!
 - Recommended rotation interval for carinata?
 - Probably 3 years but life cycle analysis will provide insights.
- Fungicides will likely play an important role
 - Efficient and cost-effective use will be important

Efficient fungicide use

 Decision support tools (disease forecasts) can provide guidance to ensure efficient use of fungicide

- Examples of tools for canola and rape:
 - Inoculum prediction (Twengstrijm et al., 1998)
 - Weather-based disease prediction model (Koch et al., 2007)

Disease forecasting for SSR of canola

- Weather-based model
- Cropping history
- SSR history
- Date of planting
- Tillage practices
- Row spacing

 Risk prediction only valid during <u>flowering</u> period Estimated risk of Sclerotinia stem rot development for canola 3/26/2017

https://www.ag.ndsu.edu/sclerotinia/riskmap.html

Previous risk maps Select date: Get Map Risk calculator Closest NDAWN Station: Last time planted to canola: Sclerotinia on last canola: Last year's crop in this field: Tillage last year: Canola Row Spacing: Canola type: Date of Planting: Calculate Risk

Objectives:

- **1a.** Determine the temperature range and moisture duration requirements for *S. sclerotiorum* infection of carinata and canola
- **1b.** Validate/modify a weather-based SSR advisory model for the Southeast U.S.

- 2. Parameterize a weather-based model to predict carinata growth stages: GS 58 (individual flower buds on the secondary inflorescences visible but still closed) GS 60 (start of flowering period)
- 3. Implement models as web-based risk maps and decision tools

Objective 1. Sclerotinia stem rot advisory model

- A. Determine environmental requirements for S. sclerotiorum infection on carinata and canola
 - Controlled environment and field studies
- B. Validation/modification of existing advisory model (Koch et al., 2007)
 - Schedule fungicide applications based on accumulated infection hours
 - Number of hours with temperatures > 7°C and > 80% relative humidity (RH) accumulated after GS 58 (late bud stage)
 - Validation of 23 ih threshold for fungicide application (winter oilseed rape)
 - Comparison with standard calendar fungicide programs a single application at GS 62-65 [full flowering, 20 to 50% flowers open on main raceme, older petals falling]
 - Second application 14 days later?

Objective 2. Timing of late bud stage (GS 58)

 Estimation of growth stage is important for SSR risk prediction and timing of fungicide applications

- Influenced by many factors:
 - Variety, planting date, agro-ecological zone, seasonal weather
- Scouting to determine growth stage
- Parameterize a crop model
- Combine with satellite + UAV imagery

Objective 3. Implementation of risk models

- 1. Agroclimate
- 2. Carinata Decision Support System

- Planting date planner
- Freeze risk probabilities
- Flowering period predictor
- Sclerotinia stem rot risk tool

Local weather data for the Southeast U.S.

Local weather data for the Southeast U.S.

Carinata decision support system

Location-specific weather data

Growth stage predictor

Credit: R. Seepaul

Disease forecasting tools

Alert system

Small et al. 2015. Computers and electronics in agriculture

Work in progress...

