

The complexity of glucosinolates (GLS) in *Brassica carinata* and potential benefits for sustainable farming

> Ted Stansly Dr. David Wright & Dr. Ian Small University of Florida IFAS | NFREC – Quincy, FL

> > **SPARC 2018**

Gluco-sinol-ate (GLS)

- A sulfur and nitrogen-rich 2° metabolite for defense against herbivory and soil-borne pathogens
- Over 130 described molecules with same backbone, but vary in function, location, and concentration (Fahey et al., 2001; Tripathi & Mishra, 2007)

Classes of Glucosinolates

 Class	AA Precursor	Stability	Location
Aliphatic	Alanine, Leucine, Isoleucine, <mark>Methionine</mark>	High	Seed>sprout> shoot>root
Indole	Tryptophan	Low-Med	Roots and shoots
Aromatic	Phenylalanine and Tyrosine	Low	Roots (mostly)

Bhandari et al., 2015

- Aliphatic-GSL can be anti-nutritional and reduce palatability to livestock (Cartea and Velasco, 2008; Fahey et al., 2001; Mawson et al., 1993)
- Indole and aromatic glucosinolates play important roles in plant defense (Clay et al., 2009; Hopkins et al., 2009)

Sulfur for Oilseed Brassica

- Brassica oilseed crops have a higher demand for sulfur partially due to the production of GLS (McGrath and Zhao, 1999)
- Since 1980's atm sulfur concentration decreased 87%
- Sulfur soil tests (i.e. SO₄ -S) remains largely unreliable due to the complexities of sulfur mobility in soil profiles (Dinkins and Jones, 2013; Horneck, 2001)
- Total GLS are decreased with limitation to sulfur availability in brassica. In particular, it has downregulated aliphatic-GLS producing genes

(K. L. Falk, J. G. Tokuhisa, J. Gershenzon, 2007)

Providing Ecosystem Services

- Isothiocyanates (ITC) suppress many types of plant pathogens, including nematodes via **biofumigation** (Matthiessen & Kirkegaard, 2006)
- Suppression remained for months after ITCs have dissipated from the soil profile

(Papavizas 1966; Lewis and Papavizas, 1971; Warton et al, 2003; Weerakoon et al., 2011)

 ITCs are strongly sorbed by the organic matter, but breakdown influenced by chemical, physical and biological properties (Gimsing & Kirkegaard)

Total GLS in Carinata (2016)

Objectives

1. Determine the effects of sulfur nutrition on *B. carinata* and *B. napus* seed yield, oil content, and GLS

 \rightarrow Under greenhouse and field conditions

- → Using a **range** of GLS producing genotypes
- 2. Correlate seed characteristics to leaf chemical composition (i.e. elemental sulfur)
- 3. Determine if aliphatic-GLS can be reduced to a minimum without affecting aromatic-GLS or oil production

One-Year Greenhouse Study

Design: RCBD (split) with 6 replications

Treatments: 1. Sulfur Rate*: 0, 33, 66, & 100%

2. Genotype: *B. carinata* (x3) & *B. napus*

Fertilization: *Modified Hoagland Nutrient Solution (S = Epsom salt, MgSO₄)

Label	Species	Variety	GLS (µmol g ⁻¹)
Control	B. napus	Canterra 1918	10 - 15
Low	B. carinata	Avanza	10 - 25 + 65
Medium	B. carinata	A120	60 - 80
High	B. carinata	AGR 137	100 - 140

Results

0-S in Bolting Stage – 75 DAP

Leaf Cupping

Sulfur in Leaves

Seed Yield and Sulfur Rate

Seed Yield and Genotype

Seed GLS and Sulfur Rates

Comparing Seed Characteristics

Variable 1	Variable 2	Spearman p	P-value	
GLS	Oil	-0.8138	<0.0001	1
Erucic acid	Oil	-0.4784	0.0007	$\mathbf{\downarrow}$
Protein	Oil	-0.5849	<0.0001	\mathbf{V}
Protein	GLS	0.7932	<0.0001	1
Protein	Erucic acid	0.7288	<0.0001	↑
Erucic acid	GLS	0.7536	< 0.0001	1

These results are typically found with oilseed brassicas

One-year Field study

Two Locations:

- 1. NFREC, **Quincy**, FL (30.53963°, -84.58422°)
- 2. PSREU, **Citra**, FL (29.40784°, -82.17596°)

Soil type:

Norfolk loamy fine sand
Gainesville loamy sand
Source: USDA Web Soil survey(WSS)

Experimental Design

	Design:	RCBD with 4 replications					
	Treatments:	nents: 1. Quinc		i. Species (<i>B. carinata and B. napus</i>) ii. Sulfur rate (0, 11, 22, 34, 45 kg ha ⁻¹)			
	2. Citra:			i. Sulfur rate (0, 17, 34, 50 kg ha ⁻¹) ii. Application time (Split 2 and 3-ways)			
	Fertilization:	N source: ammonium nitrate (34-0-0); S source: sulf of potash (0-0-50-17). K levels were corrected with muriate of potash (0-0-60)					
International Processing and		Quincy:	N and S applied at planting (20%), bolting (40%) and flowering (40%)				
		Citra:	2-way sp	olit: at planting (50%) and bolting (50%)			
			3-way sp flowering	plit: at planting (20%), bolting (30%) and g (50%)			

Seed Yield Response to S-rate Quincy, FL

(p < 0.05)

Seed Yield vs Species Quincy, FL

Main effect: Species (p < 0.05)

Seed Yield vs Sulfur Rate Citra, FL

Main effect: None (p < 0.05)

GLS vs Sulfur rate Citra, FL

Main effect: Sulfur Rate (p < 0.001)

Planting and Harvesting

	Quincy	Citra
Planting Date	1/5/2017	12/8/2017
Harvest Date	6/9/2017	5/18/2017
Seeding Rate	6.73 kg/ha (6 lbs/A)	6.73 kg/ha (6 lbs/A)
Row Spacing	30.5 cm (12in)	35.56 cm (14 in)
Plot Size	2.4m x 6.1m	2.4m x 6.1m
Plot Area	14.6 m ²	14.6 m ²

	Nutrient Analysis for Quincy, FL									Sec. 1			
kg ha⁻¹								meg 100g ⁻¹	pl	Н			
	Р	К	Mg	Са	S	В	Zn	Mn	Fe	Cu	CEC	Soil pH	Buffer
	29	178	171	687	41	0.2	3.4	9	24	0.5	5.1	5.8	7.7

Weather Conditions

Temperature (range): 13.9 – 24.6 °C at Quincy 16.9 – 24.4 °C at Citra

Average Rain (range): 1.02 – 24.6 cm at Quincy 0.08 – 32.2 cm at Citra

Solar Radiation (range): 98.0 – 238.6 cm in Quincy 109.4 – 250.1 cm in Citra

Summary and Conclusion

- Both seed yield and GLS concentrations respond to sulfur rates producing similar quadratic response curves
- *B. carinata* can produce more glucosinolates (67.7%), erucic acid (33.2%), and protein (10.7%) then *B. napus*
- Leaf sulfur concentrations could be used as an indicator for seed GLS concentrations and possibly yield at harvest

Next Steps (now underway)

- Run similar sulfur trials, but under **nutrient deficient** field conditions and variable soil types (i.e. locations)
- Identify the classes of glucosinolates within plant tissue and their responses to sulfur availability
- Biotic stress response (e.g. RKN, *Sclerotinia*) to glucosinolate production
- Identify classes of glucosinolate that increase resistance to specific plant pathogens in various tissue organs → resistant genotypes

Thank You!

Qualitative and quantitative evaluation of glucosinolates in cruciferous plants during their life cycles

Natalia Bellostas, Jens C. Sørensen, Hilmer Sørensen

Department of Natural Sciences, Biochemistry and Natural Product Chemistry, The Royal Veterinary and Agricultural University, Frederiksberg (Denmark). 2013

Figure 1. Glucosinolate concentration (imol g DM⁻¹) in the different plant parts at the four growth stages monitored for the four species.

Figure 2. Concentrations (imol g DM^{-1}) of different glucosinolate types (aliphatic, aromatic and indol-3-yl) present in plant parts of each species at the last growth stage monitored (green seeds in pods).

Are GLS Bad for Business?

If GLS is bred out then:

- Reduce S inputs
- Reduce refinery steps
- Increase palatability
- = \$\$\$ (...not really)

Ex. B. rapa 'Harmoni'

- '00' (GLS, Erucic acid)
- Reduction in seed GLS + specifically all aliphatics
- Rest had high indole and aromatic-GLS

A polish spring rape was introduced in the 1960's with low GLS, possibly due to transporter gene knockout (McGrath and Zhao, 1999)

Seed GLS and Leaf Sulfur

Positive correlation in genotypes

Similar efficiency of Sulfur uptake to seed GLS

Seed Yield and Leaf Sulfur

Positive correlation of in genotypes

Stronger in carinata low

Carinata high more efficient at utilization for seed yield

High-throughput Nematode Assay

Erioglaucine (egg mass)

Acid Fuchsin (nematodes)

HPLC Data (so far) - Canola

